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We study the transport and deposition dynamics of colloids in saturated porous media under unfavorable
filtering conditions. As an alternative to traditional convection-diffusion or more detailed numerical models, we
consider a mean-field description in which the attachment and detachment processes are characterized by an
entire spectrum of rate constants, ranging from shallow traps which mostly account for hydrodynamic disper-
sivity, all the way to the permanent traps associated with physical straining. The model has an analytical
solution which allows analysis of its properties including the long-time asymptotic behavior and the profile of
the deposition curves. Furthermore, the model gives rise to a filtering front whose structure, stability, and
propagation velocity are examined. Based on these results, we propose an experimental protocol to determine
the parameters of the model.
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I. INTRODUCTION

Many processes in biological systems as well as in the
chemical and petroleum industry involve the transport and
filtration of particles in porous media with which they inter-
act through various forces �1–4�. These interactions often
result in particle adsorption and/or entrapment by the me-
dium. Examples include filtration in the respiratory system,
groundwater transport, in situ bioremediation, passage of
white blood cells in brain blood vessels in the presence of
jam-1 proteins, passage of viral particles in granular media,
separation of species in chromatography, and gel permeation.
The particle-medium interactions in these systems are not
always optimal for particle retention. For example, the pas-
sage of groundwater through soil often happens under
chemically unfavorable conditions, and as a result many cap-
tured particles �e.g., viruses and bacteria� may be released
back to the solution. While filtration under favorable condi-
tions has been studied and modeled extensively �5–14�, we
are just beginning to understand the process occurring under
unfavorable conditions.

Several models have been developed to describe the ki-
netics of particle filtration under unfavorable conditions. The
most commonly used ones are, in essence, phenomenological
mean-field models based on the convection-diffusion equa-
tion �CDE� �see Eq. �1� and Sec. II�. Typically, one models
the dynamics of free particles in terms of the average drift
velocity v and the hydrodynamic dispersivity �, while the net
particle deposition rate rd accounting for particle attachment
and detachment at trapping sites is a few-parameter function
of local densities of free and trapped particles. For given
filtering conditions, the parameters � and v can be deter-
mined from a separate experiment with a tracer, while the
coefficients of the function rd can be obtained by fitting Eq.
�1� to the breakthrough curves.

Despite their attractive simplicity, it is widely accepted
now that the phenomenological models at the mean-field
level have significant problems. First, the depth-dependent
deposition curves for viruses and bacteria are often much
steeper than it would be expected if the deposition rates were

uniform throughout the substrate �15–22�. This was com-
monly compensated by introducing the depth-dependent
deposition rates. The problem was brought to light in Ref.
�23�, where it was demonstrated that the steeper-than-
expected deposition rates under unfavorable filtering condi-
tions also exist for inert colloids.

Second, Bradford et al. �24,25� pointed out that the usual
mean-field models based on the CDE, accounting for dy-
namic dispersivity and attachment and detachment phenom-
ena, cannot explain the shape of both the breakthrough
curves and the subsequent filter flushing. In these experi-
ments some particles were retained in the medium, and the
authors argued for the need to include the straining �perma-
nent capture of colloids� in the model. Even so, these models
may still be insufficient to fit the experiments �26�.

More elaborate models to describe deep-bed filtration
have been proposed in Refs. �27–30�. These models go be-
yond the mean-field description by simulating subsequent
filter layers as a collection of multiply connected pipes with
a wide distribution of radii, which results in a variation in
flow speed and also of the attachment and detachment rates
�even straining in some cases�. The disadvantage of these
models is that they are essentially computer based: it is dif-
ficult to gain an understanding of the qualitative properties of
the solutions, without extensive simulations. Furthermore,
the simulation results suffer from statistical uncertainties.

In the present work, we develop a minimalist mean-field
model to investigate filtering under unfavorable conditions.
The model accounts for both a convective flow and the pri-
mary attachment and detachment processes. Unlike the pre-
vious mean-field models of filtration, our model contains at-
tachment sites �traps� with different detachment rates Bi �see
Eq. �32��, which allows an accurate modeling of the filtration
dynamics over long-time periods for a broad range of inlet
concentrations. Yet, the model admits exact analytical solu-
tions for the profiles of the deposition and breakthrough
curves which permit us to understand qualitatively the effect
of the corresponding parameters and design a protocol for
extracting them from experiment.

One of the advantages of our model is that the “shallow”
short-lived traps represent the same effect as hydrodynamical
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dispersivity without generating unphysically fast moving
particles or requiring an additional boundary condition at the
inlet of the filter. The “deep” long-lived traps allow to cor-
rectly simulate long-time asymptotics of the released colloids
in the effluent during a washout stage. The traps with inter-
mediate detachment rates determine the most prominent fea-
tures of breakthrough curves. The effect of every trap kind is
to decrease the apparent drift velocity. As attachment and
detachment rate constants depend on colloid size, we can
also account for the apparent acceleration of larger particles
without any microscopic description as in Ref. �31�. The
particle-size distribution can also be used to analyze the
steeper deposition profiles near the inlet of the filter
�16,17,22,23�.

The paper is organized as follows. In Sec. II, we give a
brief overview of colloid-transport experiments, CDE mod-
els, and their analytical solutions in simple cases. The linear-
ized multirate convection-only filtration model is introduced
in Sec. III. The model is characterized by a discrete or con-
tinuous trap-release-rate distribution; it is generally solved in
quadratures and completely in several special cases. The re-
sults support our argument that the hydrodynamic dispersiv-
ity can be traded for shallow traps. This serves as a basis for
the exact solution of the full mean-field model for filtration
under unfavorable conditions introduced in Sec. IV, where
we show that a large class of such models can be mapped
exactly back to the linearized ones and analyze their solu-
tions, as well as the propagation velocity, structure, and sta-
bility of the filtering front. We suggest an experimental pro-
tocol to fit the parameters of the model in Sec. V and give
our conclusions in Sec. VI.

II. BACKGROUND

A. Overview of colloid transport experiments

A typical setup of a colloid-transport experiment is shown
in Fig. 1. A cylindrical column packed with sand or other
filtering material is saturated with water running from top to
bottom until the single-phase state �no trapped air bubbles� is
achieved. At the end of this stage, colloidal particles are
added to the incoming stream of water with both the concen-
tration of the suspended particles and the flow rate kept con-
stant over time T. This is sometimes followed by a filter
washout stage in which clean water is pumped through the
filter. The filtration processes are characterized by two rel-
evant experimental quantities: the particle breakthrough and
deposition profile curves. While breakthrough curve repre-
sents the concentration of effluent particles at the outlet of
the column as a function of time, deposition curves illustrate
the depth distribution of concentration of the particles re-
tained throughout the column.

B. Convection-diffusion transport model

As the suspended particles move through the filtering col-
umn, each individual colloid follows its own trajectory. Con-
sequently, even for small particles that are never trapped in
the filter, the passage time through the column fluctuates. In
the case of laminar flows with small Reynolds numbers and

sufficiently small particles, which presumably follow the lo-
cal velocity lines, the passage time scales inversely with the
average flow velocity along the column v. The effects of the
variation between the trajectories of particles as well as their
speeds can be approximated by the velocity-dependent diffu-
sion coefficient D=�v, where � is the hydrodynamic disper-
sivity of the filtering medium. In comparison, the actual dif-
fusion rate of colloids in experiments is negligibly small.
Dispersivity is often obtained through tracer experiments in
which the motion of the particles, i.e., salt ions, which move
passively through the filter medium without being trapped, is
traced as a function of time.

Overall, the dynamics of the suspended particles along the
filter can be approximated by the mean-field CDE,

�C

�t
+ v

�C

�x
− �v

�2C

�x2 = − rd, �1�

where C�C�x , t� is the number of suspended particles per
unit water volume averaged over the filter cross section at a
given distance x from the inlet and rd is the deposition rate
which may include both attachment and detachment pro-
cesses.

C. Issues with the CDE approximation

The diffusion approximation employed in Eq. �1� has two
drawbacks which could seriously affect the resulting calcu-
lations if enough care is not used.

First, while the diffusion approximation works well to
describe the concentration C�x , t� of suspended particles in

FIG. 1. �Color online� Schematic of experimental setup in the
colloid-transport studies.
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places where C�x , t� is large, it seems to significantly over-
estimate the number of particles far downstream where
C�x , t� is expected to be small or zero. This is mainly due to
the fact that the diffusion process allows for infinitely fast
transport, albeit for a vanishingly small fraction of particles.
In the simple case of tracer dynamics �rd=0 in Eq. �1��, the
general solutions as presented in Eqs. �6� and �7� are nonzero
even at very large distances x−vt�2��vt�1/2. While in many
instances this may not be crucial, the application of the
model to, e.g., public health and water safety issues might
trigger a false alert.

Second, for the filtering problem one expects the concen-
tration C�x , t� to be continuous, with the concentration down-
stream uniquely determined by that of the upstream. On the
other hand, Eq. �1� contains second spatial derivative, which
requires in addition to the knowledge of C�x , t� at the inlet,
x=0, another type of boundary condition to describe the con-
centration of particles along the column. This additional
boundary condition could be, e.g., the spatial derivative
C��x , t� at the inlet, x=0, or the outlet, x=L �22,32�, or the
fixed value of the concentration at the outlet. We show below
that fixing a derivative introduces an incontrollable error. On
the other hand, we cannot introduce a boundary condition for
the function C�x , t� at the outlet, x=L, as this is precisely the
quantity of interest to calculate.

The situation has an analogy in neutron physics �33�.
While neutrons propagate diffusively within a medium, they
move ballistically in vacuum. A correct calculation of the
neutron flux requires a detailed simulation of the momentum
distribution function within a few mean-free paths from the
surface separating vacuum and the medium. In contrast to
the filtration theory, for the case of neutron scattering, where
the neutron distribution is stationary it is common to use an
approximate boundary condition in terms of a “linear ex-
trapolation distance” �the inverse logarithmic derivative of
neutron density�.

The CDE �see Eq. �1�� can be solved on a semi-infinite
interval �xmax�L� with setting C��x , t�=0 at xmax and calcu-
lating the value of C�x , t� at x=L as an approximation for the
concentration of effluent particles. To illustrate this situation,
we solve Eq. �1� for the case of tracer particles, where the
deposition rate is set to zero, rd=0. We consider a semi-
infinite geometry with the initial condition C�x ,0�=0 and a
given concentration C�0, t� at the inlet. The corresponding
solution is presented in Sec. II D. The spatial derivative at
the boundary given in Eq. �9� is nonzero, time dependent,
and rather large at early stages of evolution when the diffu-
sive current near the boundary is large. Therefore, setting an
additional boundary condition for the derivative, e.g.,
C��0, t�=0, is unphysical.

On the other hand, the problem with the boundary condi-
tion far downstream, C�xmax, t�=0, xmax�L, can be ill-
defined numerically, as this condition is automatically satis-
fied to a good accuracy as long as the bulk of the colloids has
not reached the end of the interval.

D. Tracer model

The simplest version of the convection-diffusion equation
�Eq. �1�� applies to tracer particles where the deposition rate
is set to zero, rd=0,

�C

�t
+ v

�C

�x
− �v

�2C

�x2 = 0. �2�

With the initial conditions, C�x ,0�=0, the Laplace-

transformed function C̃� C̃�x , p� obeys the equation

pC̃ + vC̃� − �vC̃� = 0, �3�

where primes denote the spatial derivatives, C̃���xC̃�x , p�.
The solution to the above equation is C̃�e�x, with

�� =
1

2�
� � 1

4�2 +
p

�v
�1/2

. �4�

At semi-infinite interval x�0, only the solution with nega-
tive �=�− does not diverge at infinity. Given the Laplace-

transformed concentration at the inlet, C̃�0, p�, we obtain

C̃�x,p� = C̃�0,p�exp� x

2�
− x� 1

4�2 +
p

�v
	1/2� . �5�

The inverse Laplace transformation of the above equation is
a convolution,

C�x,t� = 

0

t

dt�C�0,t − t��g�x,t�� , �6�

with the tracer Green’s function �GF�

g�x,t� =
x

2�	�v�1/2
1

t3/2exp�−
�x − vt�2

4�vt
� . �7�

In the special case C�0, t�=C0=const, the integration results

C =
C0

2
�1 + erf� tv − x

2�tv��1/2	 + ex/� erfc� tv + x

2�tv��1/2	� , �8�

where erfc�z��1−erf�z� is the complementary error func-
tion.

We note that the spatial derivative of the solution of Eq.
�8� at x=0 is different from zero. Indeed, it depends on time
and is divergent at small t, implying an unphysically large
diffusive component of the particle current,

C��0,t� =
C0

2
� erfc�
�

2�
−

e−
2

�	tv��1/2�, 
2 �
tv
4�

. �9�

In the presence of the straining term, rd=A0N0C in Eq. �1�,
the GF can be obtained from Eq. �7� by introducing expo-
nential decay with the rate A0N0,

g�x,t� =
x

2�	�v�1/2
e−A0N0t

t3/2 exp�−
�x − vt�2

4�vt
� . �10�

Note that we wrote the straining rate as a product of the
capture rate A0 by infinite-capacity “permanent” traps with
the concentration N0 per unit volume of water. Such a fac-
torization is convenient for the nonlinear model presented
later in Sec. IV. The same notations are employed throughout
this work for consistency.
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III. LINEARIZED MEAN-FIELD FILTRATION MODEL

In this section we discuss the linearized convection-only
multitrap filtration model, a variant of the multirate CDE
model first proposed in Ref. �34�. Our model is characterized
by a �possibly continuous� density of traps as a function of
detachment rate �see Eq. �23��. Generically, continuous trap
distribution leads to nonexponential �e.g., power-law�
asymptotic forms of the concentration in the effluent on the
washout stage.

The main purpose of this section is to demonstrate that
“shallow” traps with large detachment rates have the same
effect as the hydrodynamic dispersivity in CDE. In addition,
the obtained exact solutions will be used in Sec. IV as a basis
for the analysis of the full nonlinear mean-field model for
filtration under unfavorable conditions.

A. Shallow traps as a substitute for diffusion

To rectify the problems with the diffusion approximation
noted previously, we suggest an alternative approach for the
propagation of particles through the filtering medium. In-
stead of considering the drift with an average velocity with
symmetric diffusionlike deviations accounting for dispersion
of individual trajectories, we consider the convective motion
with the maximum velocity v. The random twists and turns
delaying the individual trajectories are accounted for by in-
troducing Poissonian traps which slow down the passage of
the majority of the particles through the column. In the sim-
plest case suitable for tracer particles, the relevant kinetic
equations read as follows:

Ċ + vC� + N1ṅ1 = 0, ṅ1 = A1C − B1n1, �11�

with n1�n1�x , t� as the auxiliary variable describing the av-
erage number of particles in a trap, N1 as the number of traps
per unit water volume, A1 as the trapping rate, and B1 as the
release rate. The particular normalization of the coefficients
is chosen to simplify the formulation of models with traps
subject to saturation in Sec. IV.

To simulate dispersivity where all time scales are in-
versely proportional to propagation velocity, we must choose
both A1 and B1 proportional to v. The corresponding param-
eter � in A1��v has a dimension of area and can be viewed
as a trapping cross section. The length � in the release rate
B1�v /� can be viewed as a characteristic size of a stagna-
tion region. On general grounds we expect ���2 with � on
the order of the grain size.

B. Single-trap model with straining

To illustrate how shallow traps can provide for dispersiv-
ity in convection-only models, let us construct the exact so-
lution of Eq. �11�. In fact, it is convenient to consider a
slightly generalized model with the addition of straining,

Ċ + vC� + N1ṅ1 = − A0N0C, ṅ1 = A1C − B1n1. �12�

With zero initial conditions the Laplace transformation gives

for C̃� C̃�x , p�,

�p + A0N0 +
A1N1p

p + B1
�C̃ + vC̃� = 0. �13�

The boundary value for Laplace-transformed C�x , t� at the

inlet is given by C̃�0, p�. With initially clean filter, C�x ,0�
=n�x ,0�=0, and a given free-particle concentration C�0, t� at
the inlet, the solution to the linear one-trap convection-only
model with straining �Eq. �12�� is a convolution of the form
presented in Eq. �6� with the following GF �35�:

g�x,t� = e−�x/v−B1�t−x/v���t − x/v�

+ ��t − x/v�
�A1N1B1x�1/2

�tv − x�1/2 I1��t�� , �14�

where ��A0N0+A1N1 is the clean-bed trapping rate, ��z� is
the Heaviside step-function, and I1��t� is the modified Bessel
function of the first kind with the argument

�t �
2

v
�A1N1B1�tv − x�x�1/2. �15�

The singular term with the  function �t−x /v� in Eq. �14�
represents the particles at the leading edge which propagate
freely with the maximum velocity v without ever being
trapped. The corresponding weight exp�−�x /v� decreases
exponentially with the distance from the origin.

Sufficiently far from both the origin and from the leading
edge, where the argument �t �Eq. �15�� of the Bessel function
is large, we can use the asymptotic form,

I1��� =
1

�2	��1/2e��1 + O��−1��, Re � � 0. �16�

Subsequently, Eq. �14� becomes

g�x,t�  e−A0N0x/v B1�1/4

2	1/2�3/4exp − ��� − ���2, �17�

where ��B1�t−x /v� is the dimensionless retarded time in
units of the release rate and ��A1N1x /v is the dimensionless
distance from the origin in units of the trapping mean-free
path.

The correspondence with the GF in Eq. �10� for the CDE
with linear straining �or Eq. �7� for the CDE tracer model in
the case of no permanent traps, N0=0� can be recovered from
Eq. �17� by expanding the square roots in the exponent
around its maximum at �=�, or x=v0t, with the effective
velocity v0=vB1 / �B1+N1A1�. Specifically, suppressing the
prefactor due to straining �N0=0 in Eq. �17��, we obtain for
the asymptotic form of the exponent at large t,

g�x,t� � exp −
�x − v0t�2

4�0v0t
, �18�

with the effective dispersivity coefficient �cf. Eq. �7��
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�0 = v
N1A1

�N1A1 + B1�2 . �19�

The approximation is expected to be good as long as both x
and t are large compared to the width of the bell-shaped
maximum.

The actual shapes of the corresponding GFs, Eqs. �7� and
�14� in the absence of permanent traps, N0=0, are compared
in Fig. 2. While the shape differences are substantial at small
t, they disappear almost entirely at later times.

C. Multitrap convection-only model

Even though the solutions of the single-trap model corre-
spond to those of the CDE �Eq. �2��, the model presented in
Eq. �12� is clearly too simple to accurately describe filtration
under conditions where trapped particles can be subsequently
released. At the very least, in addition to straining and shal-
low traps that account for the dispersivity, describing the
experiments �24,25� requires another set of “deeper” traps
with a smaller release rate.

More generally, consider a linear model with m types of
traps differing by the rate coefficients Ai, Bi,

Ċ + vC� + �
i=1

m

Niṅi = 0, ṅi = AiC − Bini. �20�

The corresponding solution can be obtained in quadratures in
terms of the Laplace transformation. With the initial condi-
tion, C�x ,0�=ni�x ,0�=0, and a given time-dependent con-
centration at the inlet, C�0, t�=C0�t�, the result for C�x , t� is a
convolution of the form presented in Eq. �6� with the GF
given by the inverse Laplace transformation formula,

g�x,t� = 

c−i�

c+i� dp

2	i
ep�t−x/v−x��p�/v�, �21�

with the response function

��p� � �
i=1

m
AiNi

p + Bi
=
 dB��B�

p + B
. �22�

Here we introduced the effective density of traps,

��B� � �
i=1

m

AiNi�B − Bi� , �23�

corresponding to various release rates.
The general structure of the concentration profile can be

read off directly from Eq. �21�. It gives zero for t�x /v,
consistent with the fact that v is the maximum propagation
velocity in Eq. �20�. The structure of the leading-edge singu-
larity �the amplitude of the  function due to particles which
never got trapped� is determined by the large-p asymptotics
of the integrand in Eq. �21�. Specifically, GF �21� can be
written as

g�x,t� = e−�x/v�t − x/v� + ��t − x/v�greg�x,t� , �24�

where �=limp→� p��p�=�iNiAi �cf. Eq. �14�� is the clean-
bed trapping rate and greg is the nonsingular part of the GF.

Similarly, the structure of the diffusionlike peak of the GF
away from both the origin and the leading edge is deter-
mined by the saddle point of the integrand in Eq. �21� at
small p. Assuming the expansion ��p�=��0�−�1p+O�p2�
and evaluating the resulting Gaussian integral around the
saddle point at

p� 
t − x/v0

2x�1/v
, v0 �

v
1 + ��0�

, �25�

we obtain

g�x,t� 
1

2�	�1x/v�1/2e−�t − x/v0�2/�4�1x/v�. �26�

The exponent near the maximum can be approximately re-
written in the form of that in Eq. �7�, with the effective
dispersivity

�0 =
v0

2

v
�1 =

v�1

�1 + ��0��2 . �27�

For the case of one trap, m=1, the expressions for the effec-
tive parameters clearly correspond to our earlier results of
Eqs. �18� and �19�. Note that the precise structure of the
exponent and the prefactor in Eq. �26� is different from those
in Eq. �18� which was obtained by a more accurate calcula-
tion.

The effective diffusion approximation �Eq. �26�� is accu-
rate for large x near the maximum as long as the integral in
Eq. �21� remains dominated by the saddle-point in Eq. �25�.
In particular, the poles of response function �22� must be far
from p�. This is easily satisfied in the case of shallow traps
with large release rates Bi� �p��.

0

0.1

0.2

0.3

0 10 20 30 40 50

g(
x,

t)

x

t=2

t=4

t=8

t=16
t=32

FIG. 2. �Color online� Comparison of the spatial dependence of
the GFs for the tracer model implemented as the convection-
diffusion equation �Eq. �1�� with rd=0 �solid lines� and the single-
trap convection model �Eq. �11�� �dashed lines�. Specifically, we
plot Eq. �7� and the regular part of Eq. �14� with N0=0 using iden-
tical values of v=v0=1 and �=�0=1 and the release rate B1=1 /2
�half the maximum value at these parameters� at t=2,4 ,8 ,16,32.
Once the maximum is sufficiently far from the origin, the two GFs
are virtually identical �see Sec. III B�.
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On the other hand, this condition could be simply violated
in the presence of “deep” traps with relatively small Bi. Over
small time intervals compared to the typical dwell time Bi

−1,
these traps may work in the straining regime in which they
would not contribute to the effective dispersivity. This situa-
tion may be manifested as an apparent time dependence of
the effective drift velocity v0 and/or the dispersivity �0.

D. Model with a continuous trap distribution

The multitrap generalization given in Eq. �20� for filtra-
tion is clearly a step in the right direction if we want an
accurate description of the filtering experiments.

Indeed, apart from the special case of a regular array of
identical densely packed spheres with highly polished sur-
faces, one expects the trapping sites �e.g., the contact points
of neighboring grains� to differ. For small particles such as
viruses, even a relatively small variation in trapping energy
could result in a wide range of release rates Bi differing by
many orders of magnitude �26,29�. Under such circum-
stances, it is appropriate to consider mean-field models with
continuous trap distributions.

Here we only consider a special case of a continuous dis-
tribution of the trap parameters, Ai and Bi, such that the
release-rate density in Eq. �22� has an inverse-square-root
singularity, ��B�=�1/2 / �	B1/2�, with the release rates ranging
from infinity all the way to zero. The corresponding response
function �22� could be expressed as

��p� = �1/2/p1/2. �28�

The inverse Laplace transform �Eq. �21�� gives the following
GF:

g�x,t� =
x�1/2

2�	v�3/2e−x2�1/2
2 /�4v2������, � � t −

x

v
. �29�

Note that, in accordance with Eq. �24�, there is no leading-
edge  function near t=x /v as the expression for the corre-
sponding trapping rate � diverges. Because of the singular
behavior of ��p� at p=0, there is no saddle-point expansion
of the form given in Eq. �25�. Thus, there is no Gaussian
representation analogous to Eq. �26�: at large t, the maximum
of the GF is located at xmax=v�1/2�2t�1/2, which is also of the
order of the width of the Gaussian maximum. The GF �Eq.
�29�� for two representative values of �1/2 is plotted in Fig. 3.

We also note that for large t at any given x, Eq. �29� has a
power-law tail �t−3/2. This property is generic for continuous
trap density distributions leading to small-p power-law sin-
gularities in ��p�. For example, taking the density of the
release rates as a power law in B,

��B� =
sin�	s�

	

�s

Bs , �30�

where s is the corresponding exponent, 0�s�1, we obtain
��p�=�sp

−s, and the large-t asymptotic of the GF at a fixed
finite x scales as

g�x,t� � ts−2. �31�

Such a power law is an essential feature of continuous dis-
tribution �30� of the detachments rates; it cannot be repro-

duced by a discrete set of rates Bi which always produce an
exponential tail.

IV. FILTRATION UNDER UNFAVORABLE CONDITIONS

A. Multitrap model with saturation

The considered linearized filtration model presented by
Eq. �20� can be used to analyze filtration of identical par-
ticles in small concentrations and over limited time interval
as long as the trapped particles do not affect the filter perfor-
mance. However, unless the model is used to simulate tracer
particle dynamics in which no actual trapping occurs, it is
unlikely that the model remains valid as the number of
trapped particles grows.

Indeed, one expects that a trapped particle changes sub-
stantially the probability for subsequent particles to be
trapped in its vicinity. Under favorable filtering conditions
characterized by filter ripening �36,37�, the probability of
subsequent particle trapping increases with time as the num-
ber of trapped particles ni grows. On the other hand, under
unfavorable filtering conditions, where the Debye screening
length is large compared to the trap size �, for charged par-
ticles one expects trapping probabilities Ai�ni� to decrease
with ni.

If repulsive force between particles is large, we can as-
sume that only one particle is allowed to be captured in each
trap. Subsequently, a single trap can be characterized by an
attachment rate Ai when it is empty and a detachment rate Bi
when it is occupied, and the mean-field trapping/release dy-
namics for a given group of trapping sites can be written as

ṅi = CAi�1 − ni� − Bini. �32�

Note that this equation is nonlinear because it contains the
product of Cni.
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FIG. 3. �Color online� Spatial dependence of the GF �Eq. �29��
for the model presented in Eq. �20� with continuous distribution of
trap parameters corresponding to inverse-square-root singularity in
the response function �see Eqs. �22� and �28��. Dashed lines show
the GF at �1/2=0.25, while solid lines present the same GF at �1/2
=1 multiplied by the factor of 8. We chose t=2,4 ,8 ,12 as indicated
in the plot. Unlike in Fig. 2, due to abundance of traps with long
release time, the GFs do not asymptotically converge toward a
Gaussian form.
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Previously, similar filtering dynamics was considered in a
number of publications �see Refs. �24,25� and references
therein�. In the present work, we allow for a possibility of
groups of traps differing by the rate parameters Ai and Bi.
The distribution of rate parameters can also be viewed as an
analytical alternative of the computer-based models describ-
ing a network of pores of varying diameter �27,29,30�.

Our mean-field transport model is completed by adding
the kinetic equation for the motion of free particles with
concentration C,

Ċ + vC� + �
i=1

m

Niṅi = 0, �33�

which has the same form as the linearized equations �Eq.
�20�� considered in Sec. III D.

We note that for shallow traps with large release rates Bi,
the nonlinearity inherent in Eq. �32� is not important for
sufficiently small suspended particle concentrations C. In-
deed, if C is independent of time, the solution of Eq. �32�
saturates at

ni�C� =
CAi

Bi + CAi
. �34�

For small free-particle concentration C or for any C and
large enough Bi, the trap population is small compared to 1,
and the nonlinear term in Eq. �32� can be ignored.

Therefore, as discussed in relation with the linearized
multitrap model �see Sec. III A and Eq. �20��, the effect of
shallow traps is to introduce dispersivity of the arrival times
of the particles on different trajectories. For this reason, we
are free to drop the dispersivity term �cf. the CDE model, Eq.
�1�� and use a simpler convection-only model �33� with sev-
eral groups of traps with density Ni per unit water volume,
characterized by the relaxation parameters Ai and Bi.

B. General properties: Stable filtering front

The constructed nonlinear equations �Eqs. �32� and �33��
describe complicated dynamics which is difficult to under-
stand in general. Here, we introduce the front velocity, a
parameter that characterizes the speed of deterioration of the
filtering capacity.

Consider a semi-infinite filter, with the filtering medium
initially clean, and the concentration C�0, t�=CA of sus-
pended particles at the inlet constant. After some time, the
concentration of deposited particles near the inlet reaches the
dynamical equilibrium ni�CA� �Eq. �34�� and, on average, the
particles will no longer be deposited there. At a given inlet
concentration, the filtering medium near the inlet is saturated
with deposited particles. On the other hand, sufficiently far
from the inlet, the filter is still clean. On general grounds,
there should be some crossover between these two regions.

The size of the saturated region grows with time �see Fig.
4�. The corresponding front velocity vA�v�CA� can be easily
calculated from the particle balance equation,

vACA + vA�
i

Nini�CA� = vCA. �35�

This equation balances the number of additional particles
needed to increase the saturated region by x=vAt on the
left, with the number of particles brought from the inlet on
the right �see Fig. 4�. The same equation can also be derived
if we set C=C�x−vAt�, ni=ni�x−vAt� and integrate Eq. �33�
over the entire crossover region. The trapped particle density
saturates as given by Eq. �34�, and the resulting front veloc-
ity is

v�CA� =
v

1 + �
i

NiAi

AiCA + Bi

. �36�

This is a monotonously increasing function of CA: larger
inlet concentration CA leads to higher front velocity, which
implies that the filtering front is stable with respect to per-
turbations. Indeed, in Appendix we show that the velocity
vAB of a secondary filtering front with the inlet concentration
CB�CA �see Fig. 5�, moving on the background of equilib-
rium concentration of free particles CA, is higher than vA,
i.e., vAB�vA. Thus, if for some reason the original filtering
front is split into two parts, moving with the velocities vA
and vAB, the secondary front will eventually catch up, restor-
ing the overall front shape.

We emphasize that the existence of the stable filtering
front is in sharp contrast with the linearized filtering problem
�see Eq. �20��, where the propagation velocity v0 �Eq. �25��
is independent of the inlet concentration, and any structure is
eventually washed out dispersively �the width of long-time
GF does not saturate with time�. Also, in the case of the filter
ripening, the nonlinear term in Eq. �32� will be negative and
thus would prohibit the filtering front solutions due to the
fact that the secondary fronts move slower, vAB�vA. The
nonlinear problem with saturation is thus somewhat analo-
gous to Korteweg–de Vries solitons �38� where the disper-
sion and nonlinearity compete to stabilize the profile,�39�.
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FIG. 4. �Color online� Solid line shows the free-particle concen-
tration near a filtering front. Dashed line shows the front shifted by
�x; the additional free and trapped particles in the shaded region are
brought from the inlet �see Eq. �35��. See Eq. �52� for exact front
shape.
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C. Exactly solvable case

1. General solution

Compared to the linear case presented in Sec. III, the
physics behind the nonlinear equations �Eqs. �32� and �33��
is much more complicated. However, the structure of these
equations immediately indicates that nonlinearity reduces fil-
tering capacity because trapping sites could saturate in this
model �see Eq. �34��. While the relevant equations can also
be solved numerically, a thorough understanding of the fil-
tering system, especially with large or infinite number of
traps, is difficult to achieve.

To gain some insight about the role of the different pa-
rameters in the filtering process, we specifically focus on the
nonlinear models presented by Eqs. �32� and �33� which can
be rendered into a linear set of equations, very similar to the
linear multitrap model �Eq. �20��. To this end, we consider
the case where all trapping sites have the same trapping cross
sections, that is, all Ai=A in Eq. �32�. If we introduce the
time integral

u�x,t� � 

0

t

C�x,t��dt�, �37�

then Eq. �32� after a multiplication by exp Au can be written
as

�t�nie
Au� + Bi�nie

Au� = �t�eAu� . �38�

Clearly, these are a set of linear equations,

ȧi + Biai = ẇ , �39�

with the following variables:

w � w�x,t� = eAu, ai � ai�x,t� = niw . �40�

Note that Eq. �33� can also be written as a set of linear
equations in terms of these variables. If we integrate Eq. �33�
over time, we find

u̇ + vu� + �
i=1

m

Nini = 0, �41�

where we assumed initially clean filter, C�x ,0�=ni�x ,0�=0.
Considering that ẇ=Au̇w and w�=Au�w, we obtain

ẇ + vw� + A�
i=1

m

Niai = 0. �42�

The main difference of the linear Eqs. �39� and �42� from
Eqs. �20� is in their initial and boundary conditions,

w�x,0� = 1, ai�x,0� = 0, �43�

w�0,t� = eAu0�t�, u0�t� � 

0

t

dt�C�0,t�� . �44�

Note that with the time-independent concentration of the par-
ticles in suspension at the inlet, i.e., C�0, t�=C0, boundary
condition �44� gives a growing exponent,

w0�t� � w�0,t� = eAC0t. �45�

The derived equations can be solved with the use of the
Laplace transformation. Denoting w̃� w̃�x , p�=Lp�w�t�� and
eliminating the Laplace-transformed trap populations
ñi�x , p��Lp�ni�x , t��, we obtain

�pw̃ − 1��1 + ��p�� + vw̃� = 0, ��p� � A�
i

Ni

p + Bi
.

�46�

The response function ��p� is identical to that in Eq. �22�,
and for the case of continuous trap distribution we can also
introduce the effective density of traps, ��B��A�iNi�B
−Bi�. The solution of Eq. �46� and the Laplace-transformed
boundary condition �Eq. �44�� becomes

w̃ =
1

p
+ �w̃0�p� −

1

p
	e−�1+��p��px/v, �47�

where w̃�0, p�= w̃0�p�. Employing the same notation as in
Eq. �21�, the real-time solution of Eqs. �39� and �42� with the
boundary conditions �Eqs. �43� and �44�� can be written in
quadratures,

w�x,t� = 1 + 

0

t

dt��w0�t − t�� − 1�g�x,t�� . �48�

The time-dependent concentration can be restored from here
with the help of logarithmic derivative,

C�x,t� =
1

A

� ln w�x,t�
�t

. �49�

2. Structure of the filtering front

In the special case C�0, t�=C0=const, the integrated con-
centration �Eq. �37�� is linear in time at the inlet, u0�t�=C0t,
and w�0, t� grows exponentially �see Eq. �45��. This expo-
nent determines the main contribution to the integral in Eq.

CA

CB

C

x (a.u.)

FIG. 5. �Color online� Free particle concentration C�x , t� with
two filtering fronts. The initial front moves on the background of
clean filter and leaves behind the equilibrium filtering medium with
C=CA. The secondary front with higher inlet concentration CB is
moving on partially saturated medium. With nonlinearity as in Eq.
�32�, the secondary front is always faster, vAB�vA; the two fronts
will eventually coalesce into a single front.
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�48� for large t and x. Indeed, in this case we can rewrite Eq.
�48� exactly as w�x , t�=1+J�C0�−J�0�, where

J�C0� � eAC0t

0

t

dt�e−AC0t�g�x,t�� . �50�

Note that J�0� is proportional to the solution of the linearized
equations �Eq. �20�� with time-independent inlet concentra-
tion C�0, t�=const �see Eq. �6��. The corresponding front is
moving with the velocity v0 �Eq. �25�� and is widening over
time �Eqs. �26� and �27��. Thus, for x /v0− t positive and
sufficiently large, this contribution to w�x , t� is small and can
be ignored. In the opposite limit of large negative x /v0− t,
J�0�=1, which exactly cancels the first term in Eq. �48�.

On the other hand, the term J�C0� grows exponentially
large with time. At large enough t, the integration limit can
be extended to infinity, and the integration in Eq. �50� be-
comes a Laplace transformation, thus

w�x,t�  1 + eAC0t

0

�

dt�e−AC0t�g�x,t��

= 1 + ep0te−�1+��p0��p0x/v, p0 � AC0. �51�

This results in the following free-particle concentration �see
Eq. �49��,

C�x,t� =
C0

e�x/v�C0�−t�AC0 + 1
, �52�

and the occupation of the ith trap �Eqs. �39� and �40��,

ni�x,t� =
A

Bi + AC0
C�x,t� , �53�

with the front velocity

v�C0� �
v

1 + ��AC0�
. �54�

Note that this coincides exactly with the general case pre-
sented in Eq. �36� if we set all Ai=A.

3. Filtering front formation

The approximation in Eq. �51� is valid in the vicinity of
the front, �x /v�C0�− t�� �AC0�−1, as long as x /v0− t is posi-
tive and large. Since v�C0��v0=v�0�, this implies

x� 1

v0
−

1

v�C0�	 �
1

AC0
, �55�

which provides an estimate of the distance from the outlet
where the front structure �Eqs. �52� and �53�� is formed. The
exactness of the obtained asymptotic front structure can be
verified directly by substituting the obtained profiles in Eqs.
�32� and �33�.

The exact expressions in Eqs. �48� and �49� for the free-
particle concentration can be integrated completely in some
special cases. Here we list two such results and demonstrate
the presence of striking similarities in the profiles C�x , t�
between different models, despite their very different rate
distributions. Furthermore, we show that the corresponding

exact solutions �Eq. �49�� converge rapidly toward the gen-
eral filtering front �Eq. �52��.

Single-trap model with straining. In Sec. III B, we found
the explicit expression �Eq. �14�� for the GF in the case of
the linear model for two types of trapping sites with rates A1
and B1 and permanent sites with the capture rate A0. The
resulting GF �with A1=A0=A and B1=B� can be used in Eq.
�48� to construct the solution for the corresponding model
with saturation,

Ċ + vC� + N0ṅ0 + N1ṅ1 = 0, �56�

ṅ0 = AC�1 − n0�, ṅ1 = AC�1 − n1� − B1n1. �57�

Let us consider the special case of the inlet concentration,
C�0, t�=C0��T− t���t�, constant over the interval 0� t�T
and zero afterward. The function w0�t� �see Eq. �44�� is then

w0�t� = exp�AC0 min�t,T�� , �58�

and the integration in Eq. �48� gives

w = 1 + e−���W�t� − eAC0TW�t − T�� , �59�

W�t� � ��t − ����eAC0�t−�� − 1

+ 

�

t

d�e−B1��−���eAC0�t−�� − 1�
d

d�
I0����	� , �60�

where ��x /v and �� is given in Eq. �15�. The concentration
of free particles, C�x , t�, can be now obtained through Eq.
�49�. The step function ��t−x /v� included in w indicates that
it takes at least t=x /v for a particle to travel a distance x.

Figure 6 illustrates C�x , t� as a function of distance, x, at a
set of discrete values of time t=1,2 , . . . ,16. The model pa-
rameters as indicated in the caption were obtained by fitting
the response function ��p�=AN0 / p+AN1 / �p+B1� at the in-
terval 0.5� p�5.0 to that of the model with the continuous
trap distribution �see Fig. 7�. The solid lines show the curves
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FIG. 6. �Color online� Formation of the filtering front for the
single-trap filtering model with straining �Eq. �56��. Lines show the
free-particle concentration C�x , t� extracted from Eq. �56� with
T=10, A=v=C0=1, N0=0.388, N1=3.60, and B1=4.97, for
t=1,2 , . . . ,16. Symbols show the front solution �Eq. �52�� for
t�10 with the front velocity �Eq. �54��.
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for t�T, while the dashed lines correspond to t�T; they
have a drop in the concentration near the origin consistent
with the boundary condition at the inlet. The exact profiles
show excellent convergence toward the corresponding front
profiles computed using Eq. �52� �symbols�.

Model with square-root singularity. Let us now consider
the nonlinear model, �Eqs. �33� and �32�� with the inverse-
square-root continuous trap distribution, producing the re-
sponse function given in Eq. �28�. The model is exactly solv-
able if we set all Ai=A, while allowing the trap densities Ni
vary with B appropriately.

The solution for the auxiliary function w corresponding to
the inlet concentration C�0, t� constant on an interval of du-
ration T is obtained by combining Eqs. �48� and �58�, with
the relevant GF �Eq. �29��. The resulting x-dependent curves
C�x , t� at a set of discrete time values are shown in Fig. 7,
along with the corresponding asymptotic front profiles �sym-
bols�, for a parameter set as indicated in the caption. The
solid lines show the curves for t�T. The dashed lines are for
t�T; they display a drop of the concentration near the origin
consistent with the boundary condition at the inlet. Again,
the time-dependent profiles show gradual convergence to-
ward front solution �52�.

Note that the profiles in Figs. 6 and 7 are very similar
even though the corresponding trap distributions differ dra-
matically. This illustrates that parameter fitting from a lim-
ited set of breakthrough curves is a problem ill-defined math-
ematically. The complexity and ambiguity of the problem
grow with increasing number of traps. In Sec. V we suggest
an alternative computationally simple procedure for param-
eter fitting using the data from several breakthrough curves
differing by the input concentrations.

V. EXPERIMENTAL IMPLICATIONS

The suggested class of mean-field models is characterized
by a large number of parameters. In the discrete case, these

are the trap rate constants Ai, Bi and the corresponding con-
centrations Ni along with the flow velocity v. In the continu-
ous case, the filtering medium is characterized by the re-
sponse function ��p� �see Eq. �22��. In our experience, two
or three sets of traps are usually sufficient to produce an
excellent fit for a typical experimental breakthrough curve
�not shown�. This is not surprising, given the number of ad-
justable parameters. On the other hand, from Eq. �54� it is
also clear that the obtained parameters would likely prove
inadequate if we change the inlet concentration. The long-
time asymptotic form of the effluent during the washout
stage would also likely be off.

One alternative to a direct nonlinear fitting is to use our
result given in Eq. �54� �or Eq. �36�� for the filtering front
velocity as a function of the inlet concentration, C0. With a
relatively mild assumption that all trapping rates coincide,
Ai=A, one obtains the entire shape of the filtering front �Eq.
�52��. Thus, fitting the front profiles at different inlet concen-
trations C0 to determine the parameter A and the front veloc-
ity v�C0� can be used to directly measure the response func-
tion ��p�.

The suggested experimental procedure can be summa-
rized as follows. �i� One should use as long filtering columns
as practically possible in order to achieve the front formation
for a wider range of inlet concentrations. �ii� A set of break-
through curves C�L , t� for several concentrations C0 at the
inlet should be taken. �iii� For each curve, the front forma-
tion and the applicability of the simplified model with all
Ai=A should be verified by fitting with the front profile �Eq.
�52��. Given the column length, each fit would result in the
front velocity v�C0�, as well as the inverse front width p
=AC0. �iv� The resulting data points should be used to re-
cover the functional form of ��p� and the solution for the
full model.

It is important to emphasize that the applicability of the
model can be controlled at essentially every step. First, the
time dependence of each curve should fit well with Eq. �52�.
Second, the values of the trapping rate A obtained from dif-
ferent curves should be close. Third, the computed washout
curves should be compared with the experimentally obtained
breakthrough curves. The obtained parameters, especially the
details of ��p� for small p, can be further verified by repeat-
ing the experiments on a shorter filtering column with the
same medium.

VI. CONCLUSIONS

In this paper, we presented a mean-field model to inves-
tigate the transport of colloids in porous media. The model
corresponds to the filtration under unfavorable conditions,
where trapped particles tend to reduce the filtering capacity,
and can also be released back to the flow. The situation
should be contrasted with favorable filtering conditions char-
acterized by filter ripening. These two different regimes can
be achieved, e.g., by changing pH of the media if the col-
loids are charged. The unfavorable filtering conditions are
typical for filtering encountered in natural environment, e.g.,
ground water with biologically active colloids such as vi-
ruses or bacteria.
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FIG. 7. �Color online� As in Fig. 6 but for filtering model �33�,
Eq. �32� with continuous inverse-square-root trap distribution �Eq.
�28��. Parameters are A=v=C0=�1/2=1, T=10. Symbols show the
front solution �Eq. �52�� for t�10 with front velocity �54�. The
raising parts of the curves are almost identical with those in Fig. 6,
while there are some quantitative differences in the tails, consistent
with the exponential vs power-law long-time asymptotics of the
corresponding solutions.
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The advantages of the model are twofold. It not only fixes
some technical problems inherent in the mean-field models
based on the CDE but also admits analytical solutions with
many groups of traps or even with a continuous distribution
of detachment rates. It is the existence of such analytical
solutions that allowed us to formulate a well-defined proce-
dure for fitting the coefficients. Ultimately, this improves
predictive capability and accuracy of the model.

The need for the attachment and detachment rate distribu-
tions under unfavorable filtering conditions has already been
recognized in the field �24–26�. Previously it has been imple-
mented in computer-based models in terms of ad hoc distri-
butions of the pore radii �27,29,30�. Such models could re-
sult in good fits to the experimental breakthrough curves.
However, we showed in Sec. V that the relevant experimen-
tal curves are often insensitive to the details of the trap pa-
rameter distributions, especially on the early stages of filter-
ing.

On the other hand, our analysis of the filtering front re-
veals that the front velocity as a function of the inlet colloid
concentration, v�C0� �Eq. �36��, is primarily determined by
the distribution of the attachment and detachment rates char-
acterizing the filtering medium. We, indeed, suggest that the
filtering front velocity is one of the most important charac-
teristics of the deep-bed filtration as it is directly related to
the loss of filtering capacity.

We have developed a detailed protocol to calculate the
model parameters based on the experimentally determined
front velocity, v�C0�. We emphasize that the most notable
feature of the model is its ability to distinguish between per-
manent traps �straining� and the traps with small but finite
detachment rate. It is the latter traps that determine the long-
time asymptotics of the washout curves.

The suggested model is applicable to a wide range of
problems in which macromolecules, stable emulsion drops,
or pathogenic micro-organisms such as bacteria and viruses
are transported in flow through a porous medium. While the
model is purely phenomenological in nature, the mapping of
the parameters with the experimental data as a function of
flow velocity and colloid size will shed light on the nature
of trapping for particular colloids. The model can also
be extended to account for variations in attachment and

detachment rates for various colloids as needed to explain
the steep deposition profiles near the inlet of filters �23�.
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APPENDIX: VELOCITY OF AN INTERMEDIATE FRONT

Here we derive an inequality for the velocity vAB of an
intermediate front interpolating between free-particle con-
centrations CA and CB �Fig. 5�.

We first write the expressions for the filtering front veloci-
ties in clean filter, with the inlet concentrations CA and CB
�CA �cf. Eq. �35��,

� v
vA

− 1�CA = �
i

Nini�CA� ,

� v
vB

− 1�CB = �
i

Nini�CB� .

The velocity vAB of the filtering front interpolating between
CA and CB �Fig. 5� is given by

� v
vAB

− 1��CB − CA� = �
i

Ni�ni�CB� − ni�CA�� . �A1�

Combining these equations, we obtain

CB

vB
−

CA

vA
=

CB − CA

vAB
. �A2�

From here we conclude that the left-hand side �lhs� of Eq.
�A2� is positive. Solving for vAB and expressing the differ-
ence vAB−vA, we have

vAB − vA =
CB�vB − vA�

�CB

vB
−

CA

vA
�vB

. �A3�

For the model with saturation �Eq. �32��, we saw that vB
�vA, thus vAB�vA.
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